Technology for Cleaning the External Surfaces of Air-Cooled Condensers

Gary Fischer Conco Systems, Inc.

Air Cooled Condensers

Air cooling may be the only practical condensing technology for certain sites

- Mine-mouth power plant with inadequate local cooling water source (Black Hills, WY)
- Plant situated in a desert (El Dorado, NV)
- Cooling tower plume and fog would endanger highway safety (Wyodak, WY)
- Thermal pollution with once-through system must be avoided (Athens, NY)
- Conventional cooling towers intrude on rural landscape or degrade a residential area, making a permit difficult to obtain

Air Cooled Condensers

- Installed cost tends to be more expensive than their water-cooled equivalents
- An energy penalty can be incurred during summer conditions
- EPA does not consider air cooling to be the Best Available Technology (BAT)

Features of Air Cooled Condensers

- A-Frame Construction
- Finned tubes
- Parallel Flow Condensing Sections
- Counter Flow Condensing Sections
- Fans located in Base of A-frame
- Lengthy and large diameter exhaust piping prone to air inleakage

Air Cooled Condenser

Parallel Flow Panels

Deaerator Panels

DEAERATOR SECTION FIGURE 3.0

Fouling Tendencies

- Finned tubes tend to collect pollen, dust, insects, plastic bags, bird carcasses, etc.
- Reduced air flow rate reduces heat transfer which increases heat rate and/or reduces generation capacity
- Water, sometimes sprayed on tubes during high ambient temperature periods, can lead to the formation of scale on tube fins thus reducing the heat transfer rate

Fouled External Surface

Impact of Fouling

- Poor heat transfer
- Higher operating costs
- Increased power supply of fandrive motors
- Deterioration of turbine back pressure
- Restricted MW output

Operating Criteria

- Ambient Air Temperature
- Air temperature rise across tube banks
- Pressure drop across tube banks
- Pressure rise across fans
- Condenser back pressure
- Condenser Duty:

$$Q = W_{cond} (H_{vap} - H_{liq})$$

Instrumentation

AIR-COOLED CONDENSER

INSTRUMENTTAION FIGURE 4.0

Operating Data Correlation

- ASME is moving forward with performance standards and an industry draft is expected by year end.
- Two common ways of presenting air cooled condenser performance data:
 - Expected condenser duty plotted against inlet dry bulb air temperature for various values of condenser back pressure
 - Expected condenser back pressure plotted against percent design air flow for various values of ambient air temperature

Cleaning Techniques

Three principal methods of cleaning an air cooled condenser:

- Fire hose
- High pressure handlance
- Automated cleaning machine

Fire Hose

- High volume of water but low washing effect
- Unit must be taken out of service and scaffolding erected
- Improvements are quite small, since only a portion of debris is removed, remainder being compacted between tube fins

High Pressure Handlance

- Low water consumption and a high water pressure
- Latter can damage galvanized surfaces and/or snap off fins
- Unit must be taken out of service and scaffolding erected
- Again, improvements are quite small since only portion of debris is removed, remainder being compacted between tube
 fins

Automated Cleaning Machine

- Nozzle beam optimally matched to tube bundle geometry with a constant jet angle
- 60 GPM at 1,000-2,000 psi water pressure avoids fin and tube surface damage
- Nozzle design, distance from surface and jet energy adjustable
- Carriage moves at a constant speed
- Water contains no additives
- Fouling removed effectively and uniformly
- No need to shut unit down or erect scaffolding

Permanently Installed System

Nozzle Beam

Nozzle Satisfies Fin Geometry

Semi-Automated System

Portable System

Cleaning Results

Fouled

During Cleaning

Cleaned

Performance Improvements

- Cleaning almost invariably allows fan speeds to be reduced, reducing auxiliary power consumption
- In some plants, cleaning can also result in increase in generation capacity (e.g. from 15 MW to 18 MW)
- Economic savings from cleaning can be estimated using simple calculations. In one UK plant it was estimated to be \$18,476 /week

Economic Efficiency Calculation for a 400 MW power plant

8 mbar \$45.00

Before cleaning turbine back pressure 130 mbar

After cleaning turbine back pressure 100 mbar

30 mbar Difference 3.8 MW

Increase in weekly revenue after cleaning:

 $3.8MW \times 45.00$ \$ x 7 days x 24h x 75% running time =

\$21,546.00 \$/week

Conclusions

- Air cooled condensers are a viable alternative to steam surface condensers.
- They allow a plant to be built on sites that are otherwise subject to impossible design constraints.
- Because of the fouling tendencies air cooled condensers require effective cleaning systems.
- Performance improvements may be achieved by maintaining the cleanliness of the external surfaces.